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Summary 
Equations for the semianalytic representation of 

a class of surfaces that vary smoothly in cross- 
sectional shape are presented. Some methods for fit- 
ting together and superimposing such surfaces are 
described. A brief discussion is also included of the 
application of the theory in various contexts such 
as computerized lofting of aerodynamic surfaces and 
grid generation. 

Introduction 
A very general class of surfaces can be approx- 

imated for computational purposes by a set of flat 
panels or of curved patches (ref. 1). Aside from the 
storage and accounting problems of defining and re- 
taining the information for each panel, such repre- 
sentations present difficulties for applications that 
require continuity of derivatives at the panel edges. 
The more stringent the smoothness requirement at 
the edge, the higher the order of the polynomial that 
is required for the modeling. This type of polynomial 
modeling leads to a surface “waviness” that may be 
difficult to detect visually but manifests itself in an 
oscillation of the derivatives. 

This problem does not exist for simple config- 
urations that can be synthesized from basic geo- 
metric shapes for which exact analytic descriptions 
are known. However, for aerodynamic configura- 
tions, this limitation to basic shapes is too restric- 
tive for meaningful design. The present paper ex- 
plores a somewhat different approach-one that re- 
tains many of the advantages of fully analytic rep- 
resentation while enlarging the class of shapes rep- 
resentable beyond simple geometric objects to  in- 
clude aerodynamic-type surfaces. A brief descrip- 
tion is included of some advantages of the method 
relative to several problems: computerized lofting 
of aerodynamic shapes (both external and internal) 
and gridding for flow-field calculations. The proce- 
dure is a generalized version of a method described in 
reference 2. 

Symbols 
A surface area 

C shape transition function 

E ,  F, G metric coefficients 

I, 3, orthonormal base vectors 

m exponent parameter (eq. (5)) 

N unit surface normal vector 

r surface vector 

polar coordinates 

independent variable used to define 
surface cross-sectional shape 

parameter defined by equation (29) 

Cartesian coordinates 

= l - x 3  

independent variable used for two- 
dimensional grid generation 

size transition function 

homotopy function of E 
independent variable used for three- 
dimensional grid generation 

Subscripts: 

1,2,3 various cross-sectional shapes used in 
defining transition surface 

quantities associated with different 
surfaces 

f fuselage surface 

i inner boundary 

1 limiting 

n normalized 

0 outer boundary 

S canopy surface 

t , X  

a, b,  c 

derivative with respect to t or x, 
respectively 

An asterisk (*) with a symbol denotes a c-function 
used in grid generation. A tilde (-) over a symbol 
denotes a A-function used in grid generation. Primes 
denote a derivative with respect to the argument. 

Analysis 

Surface Equations 

The analysis is described as it applies to the ba- 
sic lofting problem in its simplest form: a surface 
component is to be designed so that it varies gradu- 
ally and smoothly from a given initial cross-sectional 
shape to a different specified terminal or base shape. 
Such a component might represent , for example, a 
forebody, a wing, or a duct. The direction of varia- 
tion is taken to be the x-direction, with the two end 
shapes specified in y-z planes (fig. l(a)). 

Neglecting for the moment the variation in cross- 
sectional size, consider first only the shape variation. 



Suppose the initial shape can be represented in para- 
metric form with parameter t :  

and the terminal cross section is also representable 
in parametric form with the same t domain ( tal  t b ) :  

Y2 = Yz( t )  ( 2 4  

z2 = Z 2 ( t )  (2b) 

(See fig. l(b).)  

ately represented in polar form, then 
For example, if the cross sections are appropri- 

with similar expressions for y2 and z2. The z-variable 
is now normalized by 

(3) 

and a parameter c,(z,) is defined such that c, varies 
from O to 1 as z, varies continuously and monotoni- 
cally from 0 to 1 (i.e., a homotopy parameter). Then 
define c by 

~ ( z )  ZE cn[zn(z)] (4) 

Thus, c(xl)  = 0 and c(z2) = 1. The function c(x,) 
is usually specified to be smooth and monotonic. A 
typical expression for c, might be 

c,(z,) = .:: (5) 

with m as an adjustable design parameter. A tran- 
sition surface representing a smooth blending of the 
two end shapes is defined by the functions 

Y(Z, t )  = [I - C ( 4 I Y l ( t )  + C(.) Y2(t) 

4 5 ,  t )  = [1 - c(z)lz1(t) + 4.1 Z 2 ( t )  

( 6 4  

(6b) 

Finally, the size variation of the surface is pre- 
scribed by introducing an independent scaling func- 
tion X(z) which is specified to be smooth and non- 
negative but not necessarily monotonic. Thus, the 
lofted surface is defined by the equations 

Y(5,t) = X(x){[l - C ( X ) l Y l ( t )  + 4.) Y 2 ( t ) )  ( 7 4  

z ( z , t )  = X(z){[1 - C ( + l ( t )  + 4.1 Z Z ( t ) )  (7b) 

A somewhat different type of transition surface is 
defined by 

( 8 4  
(1 -1  c Y ( 4  = X Y l  Y2 

z(z, t )  = x z y c ) y ;  (8b) 

where c and X are functions of z, and y1, y2, z1, and 
z2 are all functions of t .  Other, more complicated 
forms of transition surface equations may also be 
defined. The vector form of the surface equation is 

r(x, t )  = z2? + y(z, t ) j  + z(z ,  t ) i  (9) 

Computation of Surface Parameters 

Equation (9) together with equation (7) or (8),  
defines the transition surface in terms of four func- 
tions, each defined as a function of a single inde- 
pendent variable. The two end shapes (y l , z l )  and 
(y2,zz) depend only on t ,  whereas the shape varia- 
tion function c and the size variation function X de- 
pend only on z. Therefore, the derivatives of the 
surface vector r(z,t) can be computed in terms of 
the derivatives of these individual functions. Thus, 

rz(z, t )  = 2? + [(Xz/X)  Y(Z, t )  + X C Z ( Y 2  - Y1)13 

+ [(Xz/X)  z(z,  t )  + XCZ(Z2 - z1)Ii 

rt(z, t )  = 02? + X[(I  - c)yl, + cyz,]j 

(10) 

and 

+ X[(1 - C)Zl, + CZ2$ (11) 

(See fig. l(c).) In equations (10) and (l l) ,  c and X are 
functions of z, while yl, y2, z l ,  and z2 are functions 
of t .  With these equations, one can directly compute 
the surface parameters that depend only on the first 
derivatives, such as the metric coefficients 

E = rz . rz (124 

F = rz . rt 

G = rt . rt (W 
the surface normal 

and the local area element 

dA = dz dt (14) 

By differentiating equations (10) and (11) again, the 
second derivatives rzz, rzt, and rtt  can be obtained. 
From these, the local curvature coefficients can be 
calculated as well as surface parameters such as the 
principal curvature, mean and total curvature, and 
curvature directions according to the basic differen- 
tial geometry formulas. (See, for example, ref. 3.) 
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Computed Example 
An example of a transition surface is shown in 

figure 2. This surface, which might represent the 
upper surface of a blended wing-body combination, 
was generated by equations (7) and (9) with the 
following choice of variables. For the initial cross 
section at x1 = 0, 

dT72 ( - 1 l t 5 1 )  1 Yl ( t )  = t 

+) = 3 
For the final cross section, at x2 = 5.0, 

Y 2 ( t )  = t (-1 5 t 5 1) 

.z2(t)  = JW (It1 5 0.317) 

~ g ( t )  = -0.2(ltl - 0.317) (1 2 It1 2 0.317) 

The x-coordinate was nondimensionalized as follows: 

xn G - 
X 2  

A linear variation of the shape transition was pre- 
scribed as follows: 

X 

cn(xn) = xn 

but, for this particular example, a more general 
version of the size variation function 

X(xn) = X2(l.6xn - 5.3162: 
+ 9.1332: - 4.4172:) 

was required to provide the smooth transition surface 
shown in figure 2(b). 

Use of Digitized Input 
In the event that one of the specified cross- 

sectional end shapes is difficult to describe analyt- 
ically, it is necessary to represent it numerically (for 
example, by means of digitized data). In this case, 
the data must be smoothed in order to avoid the ir- 
regularity and oscillation of the derivatives that are 
characteristic of unsmoothed data. This smoothing 
is accomplished through the use of bsplines. (De- 
tails on &spline theory and techniques are given in 
ref. 4.) The numerical cross-sectional data are dis- 
played graphically along with the first two numerical 
derivatives (fig. 3(a)). The various bspline param- 
eters are adjusted interactively until a shape is ob- 
tained that represents a satisfactory smooth approxi- 
mation to the original input shape and its derivatives 
are free of spurious oscillation (fig. 3(b)). These nu- 
merical functions describing the cross-sectional shape 

can then be used in the transition surface equations 
(eqs. (7) to (ll)), with the other end shape specified 
either analytically or numerically. 

Similarly, the shape- and size-variation functions, 
C(X)  and X(x), could be specified numerically. How- 
ever, since these variations are normally smooth and 
gradual for aerodynamic shapes, analytic expressions 
are normally satisfactory for their representation. 

It should be emphasized that, if one or more of 
the basic geometry functions is defined numerically 
but smoothed so that the required derivatives are 
meaningful, then the surface parameters can still 
be computed from the transition surface formulas 
(eqs. (7) to (9)). This formulation, which represents 
an analytic combination of numerical and analytic 
functions, is termed “semianalytic.” 

Specifying an Intermediate Cross-Sectional 
Shape 
A designer may need to define a surface which 

is to vary gradually in cross-sectional shape but in 
such a way that intermediate cross sections cannot 
reasonably be described as a blending of the two end 
shapes. Two approaches to this problem are dis- 
cussed. The first approach is to define a single transi- 
tion surface that includes t,he spec.ified intermediate 
cross-sectional shape. Denote this cross section at 
intermediate axial station x3 by y3(t), z g ( t )  with t 
having the same domain as for the two end shapes. 
For the sake of simplicity in notation, x is normalized 
so that 

21 = o  
x2 = 1 

o < x 3 < 1  

xm = 1 - z3 

Then the simplest surface that satisfies the pre- 
scribed conditions is given by 

Define 

X 

x3 - x + - Y l ( t )  - -x Y 2 ( t )  
53  x2 1 X m  

with a similar expression for z(x, t ) .  
This formula satisfies the required conditions, but 

it contains no free parameters (other than X(z)) to 
permit further flexibility in design. Some freedom in 
design could be introduced by the addition of higher 
degree terms in x, but at the expense of greater 
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. .  - . .  . . .  ” complexity and with the risk ot creating a waviness 
in the surface. 

The second approach for introducing a speci- 
fied cross-sectional shape between the two given end 
shapes is to treat the surface as two transition sur- 
faces joined end to end at  x3. Define the new nor- 
malized axial variables as 

Since multiplication by a smooth scale function X(x) 
will not affect the differentiability of the resulting 
surface, the two unscaled transition surfaces will be 
considered: 

At the juncture location x3, 

with similar expressons for the z-coordinate. In 
equations (17), (18), and (19), ca and cb are functions 
of x, whereas y l ,  y2, y3, xi,  2 2 ,  and 2 3  are functions 
of t .  

From equations (21),  it is apparent that the first 
derivative with respect to x is continuous at  2 3  only 
if ca(xa) and cb(xb) are defined so that 

ch(1) = cb(0) = 0 

except in the unusual circumstance that the two 
functions y2(t) and yl(t)  are identically equal, in 
which case the requirement is that, at x3, 

For this equation to be satisfied, one of the shape 
transition functions would fail to meet the mono- 
tonicity condition. 

If the second derivative were required to be con- 
tinuous at x3, then in addition to equation (22), the 
condition 

cb’(1) = cb’(0) = 0 (24) 
would be enforced. 

If a fourth cross section is specified at x4 (where 
2 3  < x4 < x2)  so that a third transition surface (with 
transition function cc) between 5 3  and 2 4  is required, 
then it must satisfy the conditions 

cL(0) = cL(1) = 0 

in order to ensure continuity of the first derivative at  
both ends of the interval. 

In theory, this procedure could be continued in- 
definitely with the insertion of an arbitrary number 
of specified intermediate cross sections. However, 
the requirement that the shapes be “lined-up” at 
the juncture according to equation (25) would tend 
to lead rapidly to the undesirable waviness of the 
surface. 

Combining Surfaces 
After each individual component has been rep- 

resented in analytic or semianalytic form, there re- 
mains the problem of synthesizing these components 
into a configuration. Discussion of all the various 
approaches to this problem is beyond the scope of 
the present paper, but one technique that has been 
used effectively is simple superposition. Its applica- 
tion in the present context is illustrated with a partic- 
ular example-that of superimposing a canopy onto 
a fuselage (fig. 4(a)). Let the equation for the upper 
surface of the fuselage be 

r f ( x ,  tf) = X I  + Y f ( X ,  t,)3 
+ z f ( x , t f ) i  (0 < x < x2) (26a) 

and let the equation for the canopy surface be 

rs(x,  t S )  = xd + ys(x, t s ) j  

+ z s ( x , t s ) i  (0 < x1 < x < 5 3  < 5 2 )  

(26b) 
For purposes of illustration, assume that the range 
of t is (-l,+l) for both rf and rs.  Then t = 
-1 and t = +1 represent the lateral extremes of 
the components, which are symmetric about t = 
0. Let x1  denote the axial station at  which the 
canopy surface is to be initiated. Then, for any 
x > x i ,  ys(x - zl, 1) is calculated. Then, for this 
value of y, the corresponding value of t for the 
fuselage surface is calculated (fig. 4(a)). Suppose, 
for example, that 

Y f ( X ,  t f )  = m ) t f  (274 
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ys(z-zl , ts)  = As(z-zl)ts (27b) 

ys(z-zl, 1) = As(z-xl) (28) 

Then, for the fuselage surface, the corresponding 
value of t f  is found by substituting relation (28) into 
relation (27a) 

Such a boundary value, te,  can be determined for 
each value of z > z1. If an analytic expression 
such as equation (29) cannot be obtained, t e  must be 
computed numerically. Then the synthesized surface 
is defined by the relations 

Figure 4(b) shows a surface formed by a synthesis of 
several components in this manner to form a fuselage- 
like geometry. 

Discussion Regarding Applications 
Aerodynamic Design 
The transition surface equations (eqs. (7) to  (9)) 

were originally developed as a means for rapid calcu- 
lation of surfaces generated by a lofting procedure. 
The two end cross sections are specified by the de- 
signer, and the intermediate cross sections are com- 
puted from equation (9) as z = Constant lines. These 
can be displayed graphically; and the shape and scale 
functions, ~ ( z )  and A(z), can be varied interactively 
to obtain the desired transition. The lofting lines are 
the t = Constant lines. Since the two end shapes 
are specified so that there is a natural one-to-one 
t-correspondence, this correspondence holds through- 
out the transition, and consequently there is no prob- 
lem with lofting lines developing waves or crossing 
each other. 

Grid generation 
A single transition surface such as that shown in 

figure 2(b) is especially easy to grid for purposes of 
flow calculations. The ( z , t )  coordinate lines form a 
natural surface grid. The external field can be grid- 
ded by a simple extension of the homotopic procedure 
that is used to  generate the surface itself. 

For calculation of supersonic flow over such a 
surface, a quasi-two-dimensional grid is sufficient. 

An outer boundary surface must be specified. If the 
configuration is contained within a duct (e.g., a wind- 
tunnel test section), the duct wall serves this purpose, 
but otherwise a simple shape, such as a cylinder, 
is arbitrarily chosen. This outer boundary shape 
is also represented as a transition surface with the 
same distribution of the t and z variables as used to 
describe the inner surface. Then the grid is generated 
by defining, at each constant x-station, a homotopic 
variation from the inner surface yi,zi to the outer 
boundary yo, z,. Denote this homotopy parameter 
by 'I, and the shape transition function by c*. Thus, 

c * ( ' I )  = 0 ('I = 0) (314 

c*('I) = 1 ('I = 1) (3W 
This function is taken to be independent of z; it is 
the same at each z-station. 

Now denote the size variation function by A* so 
that A i  < A *  < A,. Since the size of the inner surface, 
and possibly the outer boundary also, varies with z, 
A* cannot be independent of x. It can, however, be 
expressed in terms of a normalized function x by 

A *  = A i  + i ( A ,  - A i )  

i('I) = 0 ('I = 0 )  

X('I) = 1 ('I = 1) 

(32) 

so that 

and r\ is independent of x. By defining the grid 
at each z-station in terms of these functions, c * ( v )  
and r \ ( ~ ) ,  a natural correspondence is established 
between grid points at the various z-stations. If 
both inner and outer boundaries vary smoothly with 
z, the corresponding grid-point locations will vary 
smoothly. Figure 5 shows a grid generated in this 
manner for a cross section of a transition surface 
similar to that of figure 2(b). 

For some flow calculations, such a quasi-two- 
dimensional grid is not always adequate. If the 
grid structure is required to reflect the influence of 
the body shape upstream of the nose, a fully three- 
dimensional grid can be defined as follows. Take the 
average z-station for the surface as the origin 
so that the surface is now defined on the domain 

For the outer boundary shape, define an appropriate 
convex surface (e.g., ellipsoid) on the same <,t  do- 
main with the same distribution of the < and t vari- 
ables as for the inner surface. The outer boundary 
shape is obtained by multiplying this surface r (<, t )  
by a large scale factor A,. The grid homotopy pa- 
rameter is again denoted by 7; the shape transition 
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function, by c*(q); and the size transition, by A*(r]) 
(where 1 < A *  < Ao) .  Also a homotopic function p(E)  
is defined such that p varies monotonically from 0 
to 1 as varies from 0 to 1. Then the grid-point 
locations are given by 

4 E >  4 = A * ( r l )  PL(E) (334 

+ c*(r]) Yo(% t ) )  (33b) 

+ C* (4 Zo(E1 t ) )  (334 

Y(E,t, r l )  = A * ( r l ) { [ l -  C*(rl)lYE(Elt) 

z ( t ,  t ,  r l )  = A*(r7){[1 - C * ( 4 1 Z i ( E >  t )  

As in the quasi-two-dimensional case, considerable 
flexibility is permitted in designing the grid by in- 
dependent control of the shape and size variation 
functions. 

A grid-type structure generated by equations (33) 
is illustrated in figure 6. Figure 6(a) shows a tapered, 
cambered wing. Figure 6(b) shows two of the = 
Constant sections viewed from the wing root. Fig- 
ure 6(c) shows a t = Constant section viewed from 
the front of the wing. A blow-up of the circumscribed 
region in figure 6(c) is shown in figure 6(d) to display 
the shape of the (' = Constant lines near the surface. 

Concluding Remarks 
Equations for the semianalytic representation of a 

class of surfaces that vary gradually in cross-sectional 
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shape have been presented. It was demonstrated that 
basic surface geometry parameters can easily be calcu- 
lated with such a representation. Some methods for 
fitting together and superimposing the surfaces were 
described. Also included was a brief discussion of the 
application of the theory in various contexts such as 
computerized lofting of aerodynamic surfaces and grid 
generation. 

NASA Langley Research Center 
Hampton, VA 23665 
December 18, 1984 
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(a) Perspective view of lofted surface. 

-1 0 1 

-1 0 1 

(b) Normalized end sections. 

y l = X t  1 

(c) Scaled end sections. 

Figure 1. Analytic lofting: end sections and lofted surface. 
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1 Z 

t 
-1 0 1 

2 
Z 

4 

(a) Unscaled end sections. 

(b) Perspective view of surface. 

Figure 2. Blended wing-body combination generated as a transition surface. 
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S p l i n e  f i t  

& D i g i t i z e d  p o i n t s  

(a) Linear 20-point fit. 

Figure 3. Curve fit and numerical derivatives for digitized cross section. 
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Smoothed s p l i n e  f i t  

(b) 20-point fifth-order local b-spline fit. 

Figure 3. Concluded. 
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T y p i c a l  c r o s s  s e c t i o n  

Canopy 

F u s e l a g e  

S u p e r p o s i t i o n  of canopy o n t o  
f u s e l a g e  

(a) Canopy superimposed on fuselage. 

Figure 4. Superposition of transition surfaces. 
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(b) End view (from wing root) of two ( = Constant sections. 

Figure 6 .  Continued. 
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